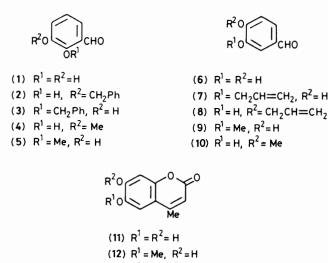
## **Regioselective Mono-***O***-alkylation of some Pyrocatechoxide Dianions**

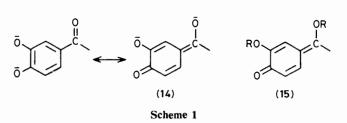
Satinder V. Kessar,\* Yash P. Gupta, Taj Mohammad, (Miss) Manju Goyal, and Kewal K. Sawal Department of Chemistry, Panjab University, Chandigarh-160 014, India

In dimethyl sulphoxide the dianions derived from 2,3- or 3,4-dihydroxybenzaldehydes and 4-methylesculetin afford products corresponding to alkylation at the less acidic site while the monoanions give the isomeric phenols.


It seemed to us that a method for the regio-controlled partial O-alkylation of polyphenolic compounds could be devised for substrates where the hydroxy groups differ in acid strength, provided the factors governing C-alkylation of mono- and dicarbanions<sup>1</sup> operate in phenoxides also. In dimethyl sulphoxide (DMSO),<sup>†</sup> O-alkylation of some pyrocatechoxide dianions indeed gave products not directly accessible through routine

 $<sup>\</sup>dagger$  The use of lithium di-isopropylamide-tetrahydrofuran gave inferior results.

Table 1. Alkylation of catechols in DMSO.<sup>a</sup>


|              |                                       |                   |                           |                      | M.p. C  |
|--------------|---------------------------------------|-------------------|---------------------------|----------------------|---------|
| Pyrocatechol | Alkyl halide                          | NaH: pyrocatechol | Product <sup>b</sup>      | % Yield <sup>e</sup> | t∕°C    |
| (1)          | PhCH <sub>2</sub> Cl                  | 2.2               | (2)                       | 65(80)               | 8485    |
| (1)          | PhCH <sub>2</sub> Cl                  | 1.1               | ( <b>3</b> ) <sup>d</sup> | 44(50)               | 9091    |
| (1)          | MeI                                   | 2.2               | (4)                       | 58(85)               | 43—44   |
| (1)          | MeI                                   | 1.1               | (5)                       | 52(66)               | 113-115 |
| (6)          | CH <sub>2</sub> =CHCH <sub>2</sub> Cl | 2.2               | (7)                       | 42                   | 66—67   |
| (6)          | CH <sub>2</sub> =CHCH <sub>2</sub> Cl | 1.1               | (8)                       | 36                   | Oil     |
| (6)          | Meľ                                   | 2.2               | (9)                       | 52                   | 7879    |
| (6)          | MeI                                   | 1.1               | (10)                      | 50                   | 105—106 |
| (11)         | MeI                                   | 3.0               | (12)                      | 48                   | 212-213 |
| (11)         | MeI                                   | 1.1               | (13)                      | 38                   | 200-201 |
|              |                                       |                   |                           |                      |         |

<sup>a</sup> The pyrocatechol (0.018 mol) was stirred with the calculated amount of NaH in DMSO (5 ml) for 1 h and the alkyl halide (0.018 mol) added. The mixture was worked up after 17 h at 25 °C. <sup>b</sup> All new compounds gave satisfactory analysis and <sup>1</sup>H n.m.r. data. Known compounds were compared with authentic samples. <sup>c</sup> Yields are for pure products isolated after crystallisation or chromatography; yields based on n.m.r. analysis (where applicable) of crude mixtures are shown in parentheses. T.I.c. and n.m.r. analysis always revealed on benzylation using aqueous sodium hydroxide.



(13)  $R^1 = H$ ,  $R^2 = Me$ 

(monoanion) procedures (Table 1). The one-step preparation of (12), earlier<sup>2</sup> obtained from 4-methylesculetin (11) through a benzylation-methylation-debenzylation sequence (32%) overall yield), illustrates the utility of this procedure in natural product synthesis.



Since the use of only 1 mol. equiv. of the alkylating agent led to yields in excess of 50%, carbonyl O-alkylation [(14) $\rightarrow$ (15), Scheme 1] followed by hydrolysis during aqueous workup seems untenable as the major reaction course.<sup>3</sup> The observed regio-selectivity may thus be attributed to greater reactivity of the anionic site which is not stabilised through carbonyl conjugation.

Received, 21st December 1982; Com. 1467

## References

- 1 H. C. House, 'Modern Synthetic Reactions,' 2nd edn., Benjamin, California, 1972, ch. 9.
- 2 L. Velluz and G. Amiard, Bull. Soc. Chim. Fr., 1948, 1109.
- 3 As suggested for the formation (17.4%) of (7) in the reaction of (6) with allyl iodide in tetrahydrofuran-NaH; A. Reitz, M. A. Avery, M. S. Verlander, and M. Goodman, J. Org. Chem., 1981, 46, 4859.